Guided bone regeneration with biphasic calcium phosphate - a pilot study in rats

Tiago Escohar1; João Almeida e Sousa1; Ana Portela2; Mário Vasconcelos3; Ricardo Faria e Almeida3

2Master in Oral Surgery, FMDUP, Portugal | 3Assistant Professor, FMDUP, Portugal | 4Associate Professor with Aggregation, FMDUP, Portugal

XXIII Congresso da Ordem dos Médicos Dentistas, 6 - 8 November 2014, Exponor, Porto, Portugal | Contact: ruitiagoesilva@gmail.com or +351965372645

Introduction

The experimental membrane of polyethylene glycol (PEG) intends to overcome the disadvantages of other membranes and shorten surgical time. Several publications proved PEG's: biocompatibility (1, 2); occlusive function (3); ability to prevent collapse (4,5). The synthetic nature of alloplastic grafts allows for an absolute control of production, thus avoiding eventual transfer of pathologies inherent to alloplasts (6-7) Biphasic calcium phosphate (BCP) is an alloplastic graft that contains hydroxyapatite and β-tricalcium phosphate.

Objectives

Evaluate the regenerative effect of BCP covered with a PEG membrane and compare the results with the regeneration of defects covered only with the PEG membrane.

Materials and Methods

Two parietal defects with a 5mm diameter were created, with a standardized metal key (Fig.1), in seven Wistar rats 19-21 week old. The control defect (left parietal bone) was covered with a PEG membrane and the test defect (right parietal bone) was filled with 400-700µm diameter granules of BCP - Straumann®BoneCeramic - and covered with PEG membrane - Straumann®MembraGel (Fig.2, 3). After a healing period of two months the animals were sacrificed by inhalation of carbon dioxide and the samples (Fig.4) were processed. The samples were stained with Solochrome for histologic and histomorphometric analysis. The statistical analysis was made with a 95% confidence interval.

Results

Table 1 - Percentage of newly formed bone occupying the defects

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG</td>
<td>57.3 (42.7-72.0)</td>
</tr>
<tr>
<td>HA/TCP + PEG</td>
<td>61.8 (53.7-69.9)</td>
</tr>
</tbody>
</table>

Table 2 – t-test for independent samples

<table>
<thead>
<tr>
<th>Percentage of the total regenerative area</th>
<th>F</th>
<th>Sig.</th>
<th>t df</th>
<th>Mean Difference</th>
<th>Std. Error</th>
<th>95% CI of the difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal variances assumed</td>
<td>2.864</td>
<td>.014</td>
<td>-6.23</td>
<td>24</td>
<td>.539</td>
<td>-4.446</td>
</tr>
</tbody>
</table>

Table 3 - Histomorphometric analysis

- BCP particle
- Fibrous Tissue
- PEG membrane
- Neoformation limit

Conclusions

There were no statistically significant differences between the test and the control groups (p=0.539). BCP did not exhibit osteoconductive properties, had a low number of particles incorporated into the neoformed bone, but sustained PEG membrane. The BCP and PEG membrane remained intact after 2 months. The PEG membrane had a fast and easy application, fixed itself, proved to be biocompatible and occlusive.

Clinical Implications

Guided bone regeneration with BCP may not obtain the desired osteoconductive effect. The PEG membrane is a promising membrane that may help reducing the surgical time as well as facilitate the procedures.

Bibliography