A Complete Denture Strength Evaluation Based On Fracture Mechanics Concepts

Language: English

Authors:
Anghel Cemescu, PhD student eng., Nicolae Faur, Prof. eng., Politehnica University, Timisoara, Romania
Prof. Dr. Cristina Maria Bortun, Otilia Cornelia Gombos, Dr. Med. PhD student, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania

Date/Event/Venue:
July 14-17, 2010
IADR 88th General Session and Exhibition
Barcelona, Spain

Objectives
The aim of study was to evaluate the complete dentures strength and durability in case of some structural defects of complete dentures.

Material and Methods
For testing there were used samples of material and a upper complete denture, made by ECLIPSE RESIN SYSTEM (DENTSPLY International Inc. - DeguDent GmbH, Hanau Germany). Following an inspection on this denture, there were observed some defects.
For strength evaluation of complete denture it was used finite element analysis and there were calculated the stress intensity factors in located points for material's mechanical parameters. There was obtained the geometric model of the complete denture by 3D scanning (Roland 3D laser scanner, model LPX-1200). This was imported into a finite element software - ABAQUS/CAE V6.6 and was determined the state of stress and the stress intensity factors for three located defects.

Fig. 1a: Zwick Roel equipment
Fig. 1b: broken Eclipse samples
Fig. 1c: Roland 3D laser scanner LPX 1200

Fig. 1d: denture with structural defects

Fig. 1e: scanned denture image

Fig. 1f: geometric model

Fig. 1g: forces loading

Fig. 1h: denture's support areas on prosthetic field
Results

For Eclipse Base Plate there were obtained following mechanical properties: the tensile strength - $\sigma_U=59.49 \text{ MPa}$, Young's modulus - $E=2908.45 \text{ MPa}$ and fracture toughness $K_C=24.93 \text{ MPa} \cdot \sqrt{\text{mm}}$. Tensile strength and deformation analysis of the denture is revealed through chromatic specters, to which warm colors indicated the risk zones for fracture. Defects located on palatal mid-line of upper complete denture, especially those at the junction between different support areas, generate tensile stress and deformation which can determine possible mid-line fractures.

![Fig. 2a: Crack in denture](image1)

![Fig. 2b: Crack detail (K =4.32 MPa √mm)](image2)

![Fig. 2c: Crack in denture](image3)

![Fig. 2d: Crack detail (K =22.8 MPa √mm)](image4)

Conclusions

Complete dentures' defects can initiate cracks that are responsible for failure of complete denture before the expected lifetime. Experimental study of prosthesis mechanical properties by finite element analysis is used for knowledge of risk zone for fracture.

Literature

Acknowledgements

This study was supported by Ideas grant CNCSIS-UEFISCYSU, Project number PNII - IDEI code 1878/2008, contract no.1141/19.01.2009, from Ministry of Education and Research of Romania and also by Project PERFORM-ERA-ID 57649.

This Poster was submitted by Engineer PhD Anghel Cernescu.

Correspondence address:
Engineer PhD Anghel Cernescu
B-l Mihai Viteazu, no.1
Code 300222
Timisoara, Romania
A COMPLETE DENTURE STRENGTH EVALUATION BASED ON FRACTURE MECHANICS CONCEPTS

Objective:
The aim of this study was to evaluate the complete denture strength and durability in terms of some structural elements of the denture.

Materials and Methods:
Failure analysis and simulation techniques were employed to evaluate the complete denture structure. Experimental methods involved the extraction and examination of the complete denture samples. Finite element analysis was used to predict the behavior of the material under load conditions. The failure analysis involved determining the critical stress intensity factors for the identified defects.

Results:
For cases where the load was applied to different regions of the denture, the finite element analysis showed that the maximum stress intensity factors were predicted at various locations. The simulation results indicated that the complete denture could withstand loadings without failure.

Conclusions:
Complete denture defects can initiate cracks that are responsible for failure of complete denture before the expected lifetime. Experimental study of prosthesis mechanical properties by finite element analysis is used for knowledge of load zones for failure.

References:

Acknowledgments:
This research was supported by the project DGC-14-2014-2015. The authors wish to thank the support provided by the institution.

email: anjy2002@yahoo.com