Effect of Er:YAG laser beam angle and focal distance on the ultrastructural morphology of enamel

An ESEM Investigation

Language: English

Authors:
Dr. Rukshin S. Irani, Postgraduate student, Prof. Dr. Sucheta Sathe, Prof. Dr. Vivek Hegde, Head of department, Dept. of Conservative Dentistry & Endodontics, M. A.Rangoonwala College of Dental Sciences & Research Centre, Pune, India
Dr. Naresh Thukral, Senior lecturer, Founder president SOLA India, Dept. of Periodontology, M. A.Rangoonwala College of Dental Sciences & Research Centre, Pune, India

Date/Event/Venue:
21st-23rd November 2008
23rd FODI & 16th IES National Conference
Chandigarh, India

Best poster (Research category)

Introduction
In the past decade, extensive research in the field of laser dentistry has led to an increased use of lasers in clinical practice, (3-5) for removal of dental hard tissues prior to application of restorative materials (1,2) Er:YAG lasers emit a wavelength of 2.94µm, which coincides with the absorption band of water. The laser energy emitted is well absorbed by hydroxyapatite and more efficiently ablates enamel & dentin in comparison to other laser systems (6).

Hard tissue removal using lasers is a dynamic process & the use of variable laser parameters like pulse energy, pulse repetition rates, wavelength specificity to ablate enamel have been shown to produce morphological changes (7,8). The use of different beam angles and focal distances of the laser beam seem to be extremely important when considering enamel morphological changes. However literature reports regarding the same are deficient. The present in vitro study conducted evaluates the ultrastructural changes seen in enamel while varying the laser parameters of focal distance & beam angle of the Er:YAG laser.

Aim & Objective
To evaluate the effect of 3 different beam angles & 3 different focal distances on the ultrastructural morphology of enamel. To correlate these changes clinically.

Material and Methods
Thirty five non carious human premolars extracted for orthodontic purposes were selected for the study. Each tooth was sectioned upto the cervical third of the root keeping the crown intact (figure 1) & placed in position on the beam angle apparatus to carry out the laser irradiation (figure 2). Each tooth specimen was irradiated with the Er:YAG laser using a non contact handpiece (figure 3) as follows, keeping pulse energy of 250mJ, 15Hz frequency at very short pulse duration (figure 4) constant for all the groups:

<table>
<thead>
<tr>
<th>Group</th>
<th>Focal Distance</th>
<th>Beam Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5mm</td>
<td>90°</td>
</tr>
<tr>
<td>2</td>
<td>7mm</td>
<td>90°</td>
</tr>
<tr>
<td>3</td>
<td>10mm</td>
<td>90°</td>
</tr>
</tbody>
</table>

Tab. 1: Groups evaluated for variable focal distances

<table>
<thead>
<tr>
<th>Group</th>
<th>Focal Distance</th>
<th>Beam Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7mm</td>
<td>30°</td>
</tr>
<tr>
<td>5</td>
<td>7mm</td>
<td>45°</td>
</tr>
<tr>
<td>6</td>
<td>7mm</td>
<td>60°</td>
</tr>
<tr>
<td>7</td>
<td>7mm</td>
<td>90°</td>
</tr>
</tbody>
</table>

Tab. 2: Groups evaluated for variable beam angles
Following laser irradiation the enamel surfaces of each specimen were observed under the Environment Scanning Electron Microscope (ESEM). (figure 5)

Beam angle apparatus

An apparatus specially designed to facilitate an accurate setting of focal distance & beam angle was used for all groups. The apparatus consists of the following parts:

- **Protractor:** To permit adjustment of an accurate beam angle value.
- **Measuring scale:** To facilitate setting of an accurate focal distance.
- **Metal Platform:** To enable stable placement of tooth specimen for laser irradiation. (figure 13)

Fig. 1: Premolar specimen Fig. 2: Laser Beam Irradiation Fig. 3: Er:YAG Laser Noncontact Handpiece Fig. 4: Er:YAG Laser Parameters Fig. 5: ESEM

Results

Observation

Groups evaluated for variable focal distances An absence of smear layer may be appreciated in all groups

- **GROUP 1:** 5mm, 90°: Areas of melting and remineralization (figure 6)
- **GROUP 2:** 7mm, 90°: Crater like defect formation (figure 7)
- **GROUP 3:** 10mm, 90°: Areas of melting and remineralisation with cracks (figure 8)

Groups evaluated for variable beam angles

An absence of smear layer may be appreciated in all groups

- **GROUP 4:** 30° beam angle, 7mm focal distance: Laser beam has brushed past the surface of enamel (figure 9)
- **GROUP 5:** 45° beam angle, 7mm focal distance: Microretentive pattern formation (figure 10)
- **GROUP 6:** 60° beam angle, 7mm focal distance: Microretentive pattern formation with cracks (figure 11)
- **GROUP 7:** 90° beam angle, 7mm focal distance: Crater like defect formation (figure 12)
Conclusion

The following conclusions may be drawn from the present study:
1. Regarding beam angle, 60° provides increased microretentive features & surface roughness at 7mm focal distance, hence it is preferred for procedures requiring etched enamel surfaces.
2. The focal distance of 7mm with beam angle of 90° facilitates increased ablation of enamel surfaces with considerable surface roughness as well thus making it suitable to be used for caries removal.

Discussion

Enamel morphology following preparation of the surface with lasers plays an important role in bonding procedures. Previous studies conducted (9,4) have stated that Er:YAG lasers may be used as a viable alternative to conventional mechanical preparation as well as conventional acid etching provided the precise laser parameters may be achieved. The influence of variable parameters of laser irradiation on the enamel morphology seem to be of extreme clinical relevance.

In the current study, the enamel surfaces treated with the Er:YAG laser handpiece in non contact mode, keeping the beam angle constant at 90° and varying the focal distances revealed scaly irregular surfaces with an absence of smear layer. There seems to be a tendency of greater ablation when using 7mm focal distance and beam angle 90°, clinically, facilitating efficient caries removal. Different surface changes were observed when the focal distance was kept constant at 7mm with variable beam angles of 30, 45, 60 and 90°. Comparatively less microcracks, increased surface roughness with pronounced microretentive features with beam angle 60° and focal distance 7mm reveals that this seems to be more relevant for adhesive procedures.

An understanding of how the variable laser parameters influence enamel topography/morphology is essential for dentists, to facilitate selection of the appropriate technique for different procedures in restorative dentistry. This expertise in the use of recent technologies is a key factor in achieving clinical success.

Literature

Acknowledgement

The author wishes to thank
1. Dr. Niranjan Vatkar (MDS) for designing the beam angle apparatus for the study.
2. Mr. Dheeraj Suryavanshi (Automotive research association of India, Pune) for carrying out the ESEM investigation.

Abbreviations

This Poster was submitted by Dr. Rukshin S. Irani.

Correspondence address:
Dr. Rukshin S. Irani
M. A. Rangoonwala College of Dental Sciences & Research Centre
2414, East Street, 1st floor, Camp
Pune-411001
Maharashtra, India
EFFECT OF Er: YAG LASER BEAM ANGLE & FOCAL DISTANCE ON ENAMEL

An ESEM Study

INTRODUCTION

The aim of the present study was to evaluate the effect of 3 focal distances & 3 beam angles on the ultra-structural morphology of enamel and to correlate the changes clinically.

MATERIALS & METHOD

- 35 extracted human premolars sectioned up to the cervical third of the root were randomly divided into seven groups.
- The groups 1 to 3 were evaluated for different focal distances and the groups 4 to 7 were evaluated for different beam angles.
- The laser parameters of pulse energy 250 μJ, frequency 15 Hz, at very short pulse for 10 sec, were kept constant for all groups.
- Each specimen was subjected to the Laser Beam in non-contact mode and examined under the environment scanning electron microscope.

OBSERVATION

GROUPS EVALUATED FOR FOCAL DISTANCES

- GROUP 1 5 mm 60 Degrees
- GROUP 2 7 mm 60 Degrees
- GROUP 3 10 mm 60 Degrees

GROUPS EVALUATED FOR BEAM ANGLE

- GROUP 1 30 Degrees 7 mm
- GROUP 2 45 Degrees 7 mm
- GROUP 3 60 Degrees 7 mm
- GROUP 4 90 Degrees 7 mm

BEAM ANGLE APPARATUS

- Beam angle: It is the angle made by the laser beam and surface of target tissue.
- Focal Distance: It is the distance between the point of exit of the laser beam and the point at which the laser beam contacts the target tissue surface.

CONCLUSION

Under the circumstances of this study, the following conclusions can be drawn:

1. Regarding beam angle, 60° provides increased microstructural features & surface roughness at 5mm focal distance, hence it is preferred for procedures requiring etched enamel surfaces.
2. The focal distance of 7mm with beam angle of 60° facilitates increased ablation of enamel surfaces with considerable surface roughness as well as thus making it suitable for etching removal.