Chemiluminescence and LED: The Future of Early Oral Cancer Detection?

Introduction
The five-year survival rate for oral cancer patients remains unchanged at 50%, and 70% of oral carcinomas present at an advanced T3 or T4 stage. The early detection of primary oral cancer, second primaries or recurrent cancer is important for improving the survival rates. Advancements in cancer research have led to the innovation of contemporary diagnostic tools for early oral cancer detection. Vizilite® and Glowsticks based on the principle of ‘chemiluminescence’ and Light Emitting Diodes (LED) are the latest diagnostic tools available for this purpose.

Objectives
- The aim of this study was to evaluate the potential value of chemiluminescence (Vizilite® and Glowsticks) and LED as tools for the early detection of oral cancer, dysplasia and potentially malignant oral lesions.
- The efficacy of these tools was assessed in terms of sensitivity, specificity and accuracy.

Material and Methods

Inclusion criteria:
- Age of subject > 35 years.
- History of habits (smoker, alcoholic, betel quid chewer).
- Subjects with oral lesions i.e. primary squamous cell carcinomas (SCC), previously treated SCC and potentially malignant epithelial lesions (PMEL).

Methodology: (Figs. A - L)
- A total of 67 subjects were evaluated.
- For all subjects, a routine examination of the oral cavity was performed.

Phase I: (40 subjects)
- A 1% acetic acid mouth rinse (30 ml) for 1 min to remove excess saliva, debris and glycoproteins.
- An examination of oral cavity with the bluish white chemiluminescent light or Vizilite®.

Phase II: (27 subjects)
- A 1% acetic acid mouth rinse (10 ml) for 1 min.
- An examination of the oral cavity with the yellow and blue chemiluminescent Glowsticks.
- All findings were recorded and photographed.
- All lesions whether positive or negative with Vizilite®. Glowsticks and LED were biopsied.
- Tissue samples were processed and stained with haematoxylin and eosin for microscopic examination blind.
Results

Biopsies were performed on identified lesions in 37 subjects. Another 14 subjects had no lesions. In the remaining 16 subjects, a biopsy was not performed due to subject's ill-health. The biopsy results were correlated with the clinical observations and the sensitivity, specificity and accuracy were calculated.

<table>
<thead>
<tr>
<th>Diagnostic Tools</th>
<th>(n)</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vizilite®</td>
<td>32</td>
<td>100</td>
<td>85.7</td>
<td>96.8</td>
</tr>
<tr>
<td>Glowsticks</td>
<td>19</td>
<td>100</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>LED</td>
<td>19</td>
<td>100</td>
<td>90</td>
<td>95</td>
</tr>
</tbody>
</table>

(n) - Number of cases, (%) - Percentage.

Discussion
Vizilite® is expensive and can be used only for a single patient as the light lasts for 10 minutes. In our endeavour to find a cheaper alternative that could be used as an effective mass screening tool for high-risk individuals, we innovatively improvised Glowsticks and LEDs for this purpose. The light produced by Glowsticks lasts for a longer period of time (3 days) than Vizilite®. However, the LEDs are battery operated devices that produce a light of higher intensity than the other two tools, is more cost effective and can be chemically sterilized and used for screening numerous patients at one time. All three tools showed a sensitivity of 100% indicating no false negative findings. There were fewer false positive findings with the Glowsticks and LEDs and therefore their specificity is marginally greater than for Vizilite®. The overall accuracy is marginally greater for Vizilite® as the study sample evaluated is larger than for the other two tools. Although all three tools seem to be equally effective in the identification of early neoplastic and dysplastic changes, differences exist in terms of cost effectiveness, duration of use, and usage on multiple patients.

Conclusion

Chemiluminescence and LED are equally effective in the early detection of oral cancer, dysplasia and PMEL. The LED may prove to be a cheap, safe and non-invasive tool for screening high-risk individuals in clinics, health centres and remote areas devoid of modern healthcare facilities.

Acknowledgements

We thank the staff of the Departments of Oral Pathology, Oral Medicine & Periodontology, and Oral & Maxillofacial Surgery, Faculty of Dentistry, University of Malaya for their invaluable assistance. This study was funded by a Vote F grant F0105/2002D from the University of Malaya. [Ethics approval No.DFOP0202/002(P)]

Literature


This poster was submitted by Dr. Saravanan Ram.

Correspondence address:
Dr. Saravanan Ram
Department of Oral Pathology, Oral Medicine and Periodontology
Faculty of Dentistry
University of Malaya
Kuala Lumpur, Malaysia
Chemiluminescence and LED: The Future of Early Oral Cancer Detection?
SARAVANAN R* and SIAR C H
Department of Oral Pathology, Oral Medicine and Periodontology,
Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.

Introduction
The five-year survival rate for oral cancer patients remains unchanged at 50% and
70% of oral carcinomas present at an advanced T3 or T4 stage. The early detection of
primary oral cancer, second primaries or recurrent cancer is important for improving
the survival rates. Advancements in cancer research have led to the innovation of contemporary diagnostic
tools for early oral cancer detection. Vizilite®
and GloMe Trocals based on the principle of
chemiluminescence and Light Emitting
Diodes (LED) are the latest diagnostic tools
available for this purpose.

Objectives
- The aim of this study was to evaluate the
total value of chemiluminescence (Vizilite®
and GloMe Trocals) and LED as tools for the early
detection of oral cancer, dysplasia and potentially
malignant oral lesions.
- The efficacy of these tools was assessed in
terms of sensitivity, specificity and accuracy.

Materials and Methods
Inclusion criteria:
- Age of subject = 16 years.
- History of habits (smoker, alcholic, betel quid
chewer).
- Subjects with oral lesions i.e. primary squamous cell
carcinomas (SCC), previous treated SCC and
potentially malignant epithelial lesions (PMEL).

Methodology: (Figs. A – L)
- A total of 87 subjects were evaluated.
- For all subjects, a routine examination of the oral cavity
with 2x performed.
Phase I: (40 subjects)
- A 1% acetic acid mouth rinse (30 ml) for 1 min to
remove excess saliva, debris and glycoproteins.
- An examination of oral cavity with the white light
chemiluminescent lamp or Vizilite®
Phase II: (27 subjects)
- A 1% acetic acid mouth rinse (10 ml) for 1 min.
- An examination of the oral cavity with the yellow and
blue chemiluminescent GloMeTrocal.
- An examination of the oral cavity with the yellow and
blue LEDs.
- All findings were recorded and photographed.
- All lesions whether positive or negative with Vizilite®,
GloMe Trocals and LED were biopsied.
- Tissue samples were processed and stained with
haematoxylin and eosin for microscopic examination.

Discussion
Vizilite® is expensive and can be used
only for a single patient as the light needs to
be used for 10 minutes. In our endeavor to find
a cheaper alternative that could be used as
an effective mass screening tool for
high-risk individuals, we innovatively
improved GloMe Trocals and LEDs for
this purpose. The light produced by
GloMe Trocals lasts for a longer period of
time (3 days) than Vizilite®. However,
the LEDs are battery operated devices
that produce a high of intensity
within the other two tools. They are more
cost effective and can be
chemically sterilized and used for screening
numerous patients at a time.

Results
Biopsies were performed on identified lesions in 37
subjects. Another 14 subjects had no lesions. In the
remaining 16 subjects, a biopsy was not performed due
to subject’s ill-health. The biopsy results were correlated
with the clinical observations and the sensitivity, specificity
and accuracy were calculated.

Conclusions
Chemiluminescence and LED are equally effective in the early
detection of oral cancer, dysplasia and PMEL. The LED may prove to
be a cheap, safe and non-invasive tool for screening high-risk
individuals in clinics, health centres and remote areas devoid of
modern healthcare facilities.

Acknowledgements
We thank the staff of the Departments of Oral Pathology,
Oral Medicine and Periodontology, Faculty of Dentistry,
University of Malaya for their invaluable assistance.
This study was funded by a Malaysia’s Ministry of Higher
Education grant (8143504/2017H6/DR01/HIR/MOHE/03/1).

References
1. Pafe IM, Study C, Gai D. Efficacy of oral cancer in the
2. Chen S, Chen R, Lin C. How to evaluate a
3. Robert SS, Catherina OA, Sara I. How to evaluate a