Fluorescence of feldspathic ceramic and flowable resins

Pereira, J.1,2*; Poeiras, L.1; Reis, J.A.1; Martins, F.1; Di Paolo, R.2; Fuentes, V.2; Maurício, P.1
1. Instituto Universitário Egas Moniz
2. Instituto Superior Técnico, UL
3. Universidade Rey Juan Carlos

Introduction
The aesthetic outcome of a ceramic veneer is determined by the color and thickness of the ceramic, the cement and dental substrate color3,2. The color reproduction of the teeth can be optimized by their secondary optical properties such as translucency, opalescence and fluorescence2. Fluorescence consists of the absorption that a sample makes in the ultraviolet spectrum of light (UV) and the spontaneous emission of light visible in the bluish spectrum11. Nowadays there are several veneer cementation materials like light cured resin cements, flowable resins and conventional resins cements. Currently flowable resins have the lowest polymerization shrinkage results8.

Objective:
To evaluate in vitro the fluorescence changes of the feldspathic ceramic when used with different flowable resins, varying the thickness of the ceramic.

Materials and methods

Cerec BloCs C / PC color A2 blocks (VITA Zahnfabrik Spitalgasse, Germany) were used for the production of 60 ceramic samples of two different thicknesses: 0.5 and 0.8 mm, which were cut using a microtome (ISO MET 1000, Buehler®, Lake Bluff, IL, USA), with a diamond disk cooled with deionized water at constant speed (450 rpm). The ceramic samples were polished following a 400, 600 and 1200 grit sanding sequence for 15 seconds using a polishing (LaboPol-4, Stuers, Spain).

Sixty discs of Filtek® Supreme XTE Body Shade (3M ESPE Minnesota, USA) (Rc) were produced using a resin former (Porcelain Sampler, Ref. 7015, Smile Line, Switzerland), with thickness of 1 mm and light cured (EliparTM, 3M, Saint Paul, USA) for 20 seconds at 1000mW / cm² light intensity, according to the manufacturer’s instructions.

Surface treatment of the ceramic samples was carried out with hydrofluoric acid (PulpDent® Corporation, Massachusetts, USA); orthophosphoric acid (R&S, França); silane and bond (Optibond FL, Kerr, Itália).

The ceramic samples were then bonded to the composite resin using G-aenial resin cement (Vita Zahnfabrik, Germany); Athene silane and bond (Optibond FL, Kerr, Itália).

After the adhesion process, the samples were placed in a dry environment, protected from light and at room temperature, for a period of 24 hours. Fluorescence analysis was made with a Spectro fluorometer (Fluorolog® 2) at a standardized wavelength of 380 nm at room temperature. To standardize the readings a custom build support was made.

Results

The fluorescence emission intensity of the flowable resins may influence the final behavior of the ceramic restoration in respect to fluorescence. The results obtained were statistically significant for the two thicknesses used. The thickness of the ceramic influences the final emission intensity of fluorescence. Samples with lower thickness have a higher emission of fluorescence. The thicker the ceramic, the more visible the substrate and, therefore, in the samples of 0.5 mm, the optical behavior of the flowable resin used as cement was more visible.

The use of flowable resins due to their lower viscosity has become a valuable clinical use in the adhesion of very thin veneers because they have high particle loading, increasing the color stability.

Conclusions
We concluded that different cements have different fluorescence emissions and that different ceramic thicknesses influence the final restoration behavior. Samples with a lower thickness have a higher emission of fluorescence.

Clinical Implications
The optical properties of the cements are as important as those of the ceramic. The aesthetics of the ceramic restoration depends very much on the type of cement used.

References

4. Pereira, J.1,2*; Poeiras, L.1; Reis, J.A.1; Di Paolo, R.2; Fuentes, V.2; Maurício, P.1
6. Cerec BloCs C / PC color A2 blocks (VITA Zahnfabrik Spitalgasse, Germany) were used for the production of 60 ceramic samples of two different thicknesses: 0.5 and 0.8 mm, which were cut using a microtome (ISO MET 1000, Buehler®, Lake Bluff, IL, USA).
7. Surface treatment of the ceramic samples was carried out with hydrofluoric acid (PulpDent® Corporation, Massachusetts, USA); orthophosphoric acid (R&S, França); silane and bond (Optibond FL, Kerr, Itália).
8.6. Currently flowable resins have the lowest polymerization shrinkage results.
9. Discussion
The fluorescence emission intensity of the flowable resins may influence the final behavior of the ceramic restoration in respect to fluorescence. The results obtained were statistically significant for the two thicknesses used. The thickness of the ceramic influences the final emission intensity of fluorescence. Samples with lower thickness have a higher emission of fluorescence. The thicker the ceramic, the more visible the substrate and, therefore, in the samples of 0.5 mm, the optical behavior of the flowable resin used as cement was more visible.

The use of flowable resins due to their lower viscosity has become a valuable clinical use in the adhesion of very thin veneers because they have high particle loading, increasing the color stability.

Conclusions
We concluded that different cements have different fluorescence emissions and that different ceramic thicknesses influence the final restoration behavior. Samples with a lower thickness have a higher emission of fluorescence.

Clinical Implications
The optical properties of the cements are as important as those of the ceramic. The aesthetics of the ceramic restoration depends very much on the type of cement used.

References

4. Pereira, J.1,2*; Poeiras, L.1; Reis, J.A.1; Di Paolo, R.2; Fuentes, V.2; Maurício, P.1
6. Cerec BloCs C / PC color A2 blocks (VITA Zahnfabrik Spitalgasse, Germany) were used for the production of 60 ceramic samples of two different thicknesses: 0.5 and 0.8 mm, which were cut using a microtome (ISO MET 1000, Buehler®, Lake Bluff, IL, USA).
7. Surface treatment of the ceramic samples was carried out with hydrofluoric acid (PulpDent® Corporation, Massachusetts, USA); orthophosphoric acid (R&S, França); silane and bond (Optibond FL, Kerr, Itália).
8.6. Currently flowable resins have the lowest polymerization shrinkage results.