Replacing a missing tooth by a single implant-supported crown has increasingly gained popularity by both the clinicians and the patients (1). Long-term clinical studies have shown excellent survival rates of single implant tooth replacement (2-3). However, the success of an implant treatment does not only depend on the successful osseointegration of the implant, but also the prosthetic design i.e abutment-crown complexes materials and designs. (4-5). Zirconium dioxide (zirconia) is the strongest and toughest of all dental ceramics and meets the mechanical requirements for high-stress-bearing posterior restorations (6).

The purpose of this study is to evaluate the effects of abutment and framework design, different layering materials (feldspathic porcelain, indirect composite material), and monolithic restorations on the fracture strength of implant-supported zirconia-based single crowns after thermocycling.

Materials and Methods

Seventy-tile abutments (Conelog 4.3-0.8mm, C2242-430B, Camlog® Implant, Basel, Switzerland) were screwed onto dental implants (Conelog 4.3-11mm, C1062.4311, Camlog® Implant, Basel, Switzerland). Abutment-implant complexes were randomly divided into seven groups (n = 10) according to the design of the zirconia abutment and framework (VITA YZ T. VITA Zahnfabrik, Germany) as follows: uniform-thickness zirconia abutment and uniform-thickness framework layered with feldspathic porcelain (Group 1); layered with indirect composite material (Group 2); uniform-thickness zirconia abutment and anatomic design zirconia framework layered with feldspathic porcelain (Group 3); layered with indirect composite material (Group 4); anatomic design zirconia abutment and anatomic design zirconia framework layered with feldspathic porcelain (Group 5); layered with indirect composite material (Group 6); uniform-thickness zirconia abutment and monolithic zirconia crown (Group 7). All fabricated zirconia abutments were cemented on ti-base abutments, and then all crowns were cemented on ti-base-zirconia abutment complexes. All specimens were exposed to 10,000 thermal cycles between 5°C and 55°C and then tested for fracture strength.

The data were analysed statistically using SPSS software. The data were analyzed by 3-way ANOVA to test the effect of abutment design, framework design, two different layering materials, and their interaction on the fracture strength. Post-hoc assessment was performed using independent sample t-test and Bonferroni corrected tests (p<0.05). After fracture resistance testing, randomly selected specimens were sputtered with platin, for 120 s and observed with a scanning electron microscope (SEM) (JSM 7000 F, JEOL, Japan) at an original magnification of ×10, and then fracture mode classified as veneer fracture or framework fracture.

Results

The mean fracture strength values of groups were found to be statistically different with a ranking from highest to lowest as follows: Group 7 > Group 5 > Group 3 > Group 1 > Group 6 > Group 4 > Group 2 (p<0.05). Anatomical abutment and framework designs showed significantly higher strength compared to uniform abutment and framework designs regardless of layering material (p<0.05). Porcelain-layered groups had significantly higher fracture strength values in comparison to the groups layered with indirect composite (p<0.05).

Conclusions

Within the limitations of this in vitro study, it is concluded that uniformly-thick layering material (anatomic abutment/framework design) of zirconia frameworks improve fracture resistance of implant-supported zirconia-based prostheses after thermocycling. The fracture loads for flat abutment/anatomic framework and anatomic abutment/anatomic framework designs in the feldspathic porcelain layered groups were significantly higher than those in the indirect composite layered groups. All types of implant-supported zirconia-based prostheses tested after thermocycling have the potential to withstand clinical chewing forces in posterior applications.

Acknowledgements

This study was supported by the Camlog Foundation, Grant Reference Number CF21602 (Basel, 1st September 2016).

References