We are using cookies to implement functions like login, shopping cart or language selection for this website and to create anonymized statistical reports of the usage. You will find more information in our privacy policy. OK, I have understood
International Poster Journal of Dentistry and Oral Medicine



Forgotten password?


Int Poster J Dent Oral Med 5 (2003), No. 1     15. Mar. 2003

Int Poster J Dent Oral Med 2003, Vol 5 No 01, Poster 165

Craniofacial distraction osteogenesis: the orthodontic perspective

Language: English

Authors: Dr. Christiane Treutlein1, Dr. Dr. Gwen Swennen2, PD Dr. Dr. Rupert Dempf2, Johannes Ludwig Berten1
1Medical School Hannover, Dept. of Orthodontics
2Department of Oral and Maxillofacial Surgery

June 04-06. 2002
78th Congress of the European Orthodontic Society
Sorrento, Italy



In this study the literature dealing with clinical and experimental craniofacial distraction osteogenesis (DO) was reviewed from an orthodontic perspective. The purpose of this review was two-fold: (1) to evaluate the different DO experimental animal models and (2) to evaluate clinical indications and DO parameters.



A Pubmed search (NCBI, New Pubmed System) from 1966 through December 2000 was conducted. Key words applied in the search were distraction, orthodontics, lengthening, mandible, maxilla, midface, monobloc, cranial, craniofacial and maxillofacial. The experimental (revised 1 April 2001) and clinical (revised 3 April 2000) search revealed 120 and 109 articles, respectively. Flow sheets were made of each article with the specific parameters relative to DO and orthodontics

Fig. 1: Distribution of articles on experimental cranio-facial DO Fig. 2: Distribution of articles on clinical cranio-facial DO



Experimental animal studies
A total of 1207 animals were used in seven different animal models: 54 (45.0 %) studies used dogs, 25 (20.8 %) rabbits, 18 (15.0 %) sheep, 11 (9.2 %) minipigs, 7 (5.8 %) monkeys, 4 (3.3 %) rats and 1 (0.8 %) a cat model. Only 3 (2.5 %) articles investigated on orthodontic tooth movement in the regenerate1,3,4 and only 2 (1.7 %) on relaps.

    Latency   Distraction rate   Contention  
Mandibular lengthening          
Rat non-growing    5d 0,5/d 4w
Rabbit non-growing 3-5d 1/d 4w
Dog growing ? ? ?
non-growing 7d 1/d 5-6w
Sheep growing 5-7d 0,5-1/d ?
non-growing 5-7d 1/d ?
non-growing 5-7d 1/d 6w
Primate growing 5-7d 0,9/d 6-8w
non-growing 5-7d 1/d 6-8w
Maxillary advancement          
Dog growing 7d 1/d 6-8w
non-growing 7d 1/d 6-8w
Primate growing 7d ? 6-8w
non-growing ? ? ?
Midfacial advancement          
Dog growing 7d 1/d 4-6w
non-growing 7d 1/d 4-6w
Minipig growing 2-4d ? ?
non-growing 5-7d 1/d 6w
Table 1: Craniofacial DO parameters for different animal models

Clinical Indications and DO parameters
A total of 828 patients underwent craniofacial DO: 579 (70.0 %) mandibular, 129 (15.6 %) maxillary, 24 (2.9 %) simultaneous mandibular-maxillary, and 96 (11.6 %) midfacial and/or cranial DO. Only 479 patients (57.9 %) had data on follow-up and in only 248 patients (30,0 %) information on relaps was given.

Fig. 3a-c: Patient with acquired mandibular micrognathia and an extraoral bidirectional distraction device before (a,b) and after distraction (c)

  Type of Surgery        Rate      Latency    Contention   Device 
Mandibular lengthening          
Mandibular micrognathia          
<2/2-6/7-12/>16 Corticotomy 1/d 5-7d 6-8w E
  Osteotomy 1/d 5-7d 6-8w E
Mandibular retrognathia          
>14 years Body osteotomy 1/d 5-7d 6-8w I
Mandibular Widening          
>12y Symphyseal osteotomy   0,75-1/d   5-7d 6-8w I
Mandibular alveolar reconstruction            
>16y Segmental osteotomy 1/d 5-7d 8w I
    0,5/d 5-7d 4-6m I
Mandibular bone transport          
TMJ reconstruction          
>16y Reverse-L osteotomy 1/d 5-7d 5-6w E
Segmental defect reconstruction          
>16y Body osteotomy 1/d 10-12d 6-8w E
Table 2: Treatment protocols for mandibular distraction osteogenesis

Fig. 4a-c: CLP-Patient with maxillary micrognathia before (a), during (b) and after (c) transpalatal distraction

  Type of Surgery        Rate      Latency    Contention   Device 
Maxillary advancement          
5-13y Incomplete Le Fort I      700/900g    4-5d 2-3m Facial mask*  
  Complete Le Fort I      700/900g    4-5d 2-3m Facial mask*  
1/d 4-5d 2-4w** RED
1/d 4-5d 2-3m I
13-16y Complete Le Fort I 1/d 4-5d 2-4w** RED
1/d 4-5d 2-3m I
>16y Complete Le Fort I 1/d 4-5d 2-4w** RED
1/d 4-5d 2-3m I
Maxillary expansion          
>14y Incomplete Le Fort I***      0,33/d 5-7d 3-6m I/bone
0,25-1/d 5-7d 3-6m I/tooth
Maxillary alveolar reconstruction             
>16y Segmental osteotomy    1/d 5-7d 2m I
0,5/d 5-7d 4-6m
Table 3: Treatment protocols for maxillary distraction osteogenesis

Fig. 5a-c: Patient with maxillary retrognathia (a), extraoral distraction device (b) and after maxillary advancement (c)

  Type of Surgery        Rate      Latency    Contention   Device 
<4y Monobloc 1/d 5-7d 2-3m I/E
4-7/7-12/>12y Le Fort III 1/d 5-7d 2-3m I/E
>1d 0d 6m I
  Monobloc 1/d 5-7d 2-3m I/E
Table 4: Treatment protocols for midfacial and/or cranial distraction osteogenesis



On the basis of these results an attempt was done to provide guidelines for future experimental DO research, treatment protocols and success criteria for clinical craniofacial DO. There is still a lack of sufficient data, especially on orthodontic management2, dental-skeletal relaps and follow-up, so that treatment strategies have to be validated.

Criteria     %
1. Planned distraction distance is obtained 10
2. Planned distraction vector is obtained 10
3. No pseudoarthrosis 10
4. No nerve injury 10
5. No tooth damage 10
6. No persistant pain, discomfort or infection 10
7. No dentoalveolar compensations 10
8. Occlusal balance and adequate function 10
9. Patient satisfaction with esthetic and psychological outcome 10
10. Skeletal stability 1 year after the end of the contention period   10
Table 5: Criteria of success of craniofacial distraction osteogenesis



  1. Cope J.B., Harper R.P., Samchukov M.L. Experimental tooth movement through regenerate alveolar bone: A pilot study. Am J Orthod Dentofacial Orthop 1999, 116, pp 501-505.
  2. Hanson P.R., Melugin M.B. Orthodontic management of the patient undergoing mandibular distraction osteogenesis. Semin Orthod 1999, 5, pp 25-34.
  3. Liou E.J., Figueroa A.A., Polley J.W. Rapid orthodontic tooth movement into newly distracted bone after mandibular distraction osteogenesis in a canine model. Am J Orthod Dentofacial Orthop 2000, 117, pp 391-398.
  4. Liou E.J., Polley J.W., Figueroa A.A. Distraction osteogenesis: the effects of orthodontic tooth movement on distracted mandibular bone. J Craniofac Surg 1998, 114, pp 372-382.
  5. Swennen G, Schliephake H, Dempf R, Schierle H, Malevez C. Craniofacial distraction osteogenesis: a review of the literature. Part 1: clinical studies. Int J Oral Maxillofac Surg 2001, 30, pp 89-103.
  6. Swennen G, Schliephake H, Dempf R. Craniofacial distraction osteogenesis: a review of the literature. Part 2: experimental studies. Int J Oral Maxillofac Surg 2002, 31, pp 123-135.



DO: Distraction osteogenesis


This Poster was submitted by Dr. Christiane Treutlein.

Correspondence address:
Dr. Christiane Treutlein
Medical School Hannover
Dept. of Orthodontics
Carl-Neuberg-Str. 1
D-30625 Hannover